34,607 research outputs found

    Anomalous isotopic predissociation in the F³Πu(v=1) state of O₂

    Get PDF
    Using a tunable, narrow-bandwidth vacuum-ultraviolet source based on third-harmonic generation from excimer-pumped dye-laser radiation, the F³Πu←X³Σg-(1,0)photoabsorption cross sections of ¹⁶O₂ and ¹⁸O₂ have been recorded in high resolution. Rotational analyses have been performed and the resultant F(v=1) term values fitted to the ³Π Hamiltonian of Brown and Merer [J. Mol. Spectrosc. 74, 488 (1979)]. A large rotationless isotope effect is observed in the F(v=1)predissociation, wherein the Lorentzian linewidth component for ¹⁸O₂ is a factor of ∼50 smaller than the corresponding ¹⁶O₂linewidth. This effect, a consequence of the nonadiabatic rotationless predissociation mechanism, is described using a coupled-channel treatment of the strongly Rydberg-valence-mixed 3Πu states. Significant J, e/f-parity, and sublevel dependencies observed in the isotopic F(v=1) rotational widths are found to derive from an indirect predissociation mechanism involving an accidental degeneracy with the E³Σ−u(v=3) level, itself strongly predissociated by ³Σ−u Rydberg-valence interactions, together with L-uncoupling (rotational) interactions between the Rydberg components of the F and E states. Transitions into the E(v=3) level are observed directly for the first time, specifically in the ¹⁸O₂ spectrumPartial support was provided by an NSF International Opportunities for Scientists and Engineers Program Grant No. INT-9513350, and Visiting Fellowships for G.S. and J.B.W. at the Australian National University

    Room temperature self-assembly of mixed nanoparticles into complex material systems and devices

    Full text link
    The ability to manufacture nanomaterials with complex and structured composition using otherwise incompatible materials increasingly underpins the next generation of technologies. This is translating into growing efforts integrating a wider range of materials onto key technology platforms1 - in photonics, one such platform is silica, a passive, low loss and robust medium crucial for efficient optical transport2. Active functionalisation, either through added gain or nonlinearity, is mostly possible through the integration of active materials3, 4. The high temperatures used in manufacturing of silica waveguides, unfortunately, make it impossible to presently integrate many organic and inorganic species critical to achieving this extended functionality. Here, we demonstrate the fabrication of novel waveguides and devices made up of complex silica based materials using the self-assembly of nanoparticles. In particular, the room temperature fabrication of silica microwires integrated with organic dyes (Rhodamine B) and single photon emitting nanodiamonds is presented.Comment: Key words: nanotechnology, nanoparticles, self-assembly, quantum science, singel photon emitters, telecommunications, sensing, new materials, integration of incompatible materials, silica, glass, breakthrough scienc

    On Dwarf Galaxies as the Source of Intracluster Gas

    Get PDF
    Recent observational evidence for steep dwarf galaxy luminosity functions in several rich clusters has led to speculation that their precursors may be the source of the majority of gas and metals inferred from intracluster medium (ICM) x-ray observations. Their deposition into the ICM is presumed to occur through early supernovae-driven winds, the resultant systems reflecting the photometric and chemical properties of the low luminosity dwarf spheroidals and ellipticals we observe locally. We consider this scenario, utilising a self-consistent model for spheroidal photo-chemical evolution and gas ejection via galactic superwinds. Insisting that post-wind dwarfs obey the observed colour-luminosity-metallicity relations, we conclude that the bulk of the ICM gas and metals does not originate within their precursors.Comment: 43 pages, 8 figures, LaTeX, also available at http://msowww.anu.edu.au/~gibson/publications.html, to appear in ApJ, Vol 473, 1997, in pres

    Hierarchical formation of bulgeless galaxies II: Redistribution of angular momentum via galactic fountains

    Get PDF
    Within a fully cosmological hydrodynamical simulation, we form a galaxy which rotates at 140 km/s, and is characterised by two loose spiral arms and a bar, indicative of a Hubble Type SBc/d galaxy. We show that our simulated galaxy has no classical bulge, with a pure disc profile at z=1, well after the major merging activity has ended. A long-lived bar subsequently forms, resulting in the formation of a secularly-formed "pseudo" bulge, with the final bulge-to-total light ratio B/T=0.21. We show that the majority of gas which loses angular momentum and falls to the central region of the galaxy during the merging epoch is blown back into the hot halo, with much of it returning later to form stars in the disc. We propose that this mechanism of redistribution of angular momentum via a galactic fountain, when coupled with the results from our previous study which showed why gas outflows are biased to have low angular momentum, can solve the angular momentum/bulgeless disc problem of the cold dark matter paradigm.Comment: 9 Pages, 10 Figures, accepted MNRAS version. Comments welcom

    Importance of Baryon-Baryon Coupling in Hypernuclei

    Get PDF
    The ΛNΣN\Lambda N - \Sigma N coupling in Λ\Lambda--hypernuclei and ΛΛΞN\Lambda \Lambda - \Xi N coupling in ΛΛ\Lambda \Lambda--hypernuclei produce novel physics not observed in the conventional, nonstrange sector. Effects of ΛΣ\Lambda \leftrightarrow \Sigma conversion in Λ3^3_{\Lambda}H are reviewed. The role of ΛNΣN\Lambda N - \Sigma N coupling suppression in the A=4,5A=4,5 Λ\Lambda--hypernuclei due to Pauli blocking is highlighted, and the implications for the structure of   Λ10^{10}_{\;\, \Lambda}B are explored. Suppression of ΛΛΞN\Lambda \Lambda - \Xi N conversion in ΛΛ    6^{\;\;\, 6}_{\Lambda \Lambda}He is hypothesized as the reason that the matrix element is small. Measurement of ΛΛ    4^{\;\;\, 4}_{\Lambda \Lambda}H is proposed to investigate the full ΛΛΞN\Lambda \Lambda - \Xi N interaction. The implication for ΛΛ\Lambda \Lambda analog states is discussed.Comment: 17 pages LATEX, 1 figure uuencoded postscrip

    Top-Down Fragmentation of a Warm Dark Matter Filament

    Get PDF
    We present the first high-resolution n-body simulations of the fragmentation of dark matter filaments. Such fragmentation occurs in top-down scenarios of structure formation, when the dark matter is warm instead of cold. In a previous paper (Knebe et al. 2002, hereafter Paper I), we showed that WDM differs from the standard Cold Dark Matter (CDM) mainly in the formation history and large-scale distribution of low-mass haloes, which form later and tend to be more clustered in WDM than in CDM universes, tracing more closely the filamentary structures of the cosmic web. Therefore, we focus our computational effort in this paper on one particular filament extracted from a WDM cosmological simulation and compare in detail its evolution to that of the same CDM filament. We find that the mass distribution of the halos forming via fragmentation within the filament is broadly peaked around a Jeans mass of a few 10^9 Msun, corresponding to a gravitational instability of smooth regions with an overdensity contrast around 10 at these redshifts. Our results confirm that WDM filaments fragment and form gravitationally bound haloes in a top-down fashion, whereas CDM filaments are built bottom-up, thus demonstrating the impact of the nature of the dark matter on dwarf galaxy properties.Comment: 7 pages, 7 figures, replaced with MNRAS accepted version (minor revisions

    The Smith Cloud: HI associated with the Sgr dwarf?

    Get PDF
    The Smith high velocity cloud (V(LSR) = 98 kms) has been observed at two locations in the emission lines [OIII]5007, [NII]6548 and H-alpha. Both the [NII] and H-alpha profiles show bright cores due to the Reynolds layer, and red wings with emission extending to V(LSR) = 130 kms. This is the first simultaneous detection of two emission lines towards a high velocity cloud, allowing us to form the ratio of these line profiles as a function of LSR velocity. At both cloud positions, we see a clear distinction between emission at the cloud velocity, and the Reynolds layer emission (V(LSR) = 0). The [NII]/H-alpha ratio (=0.25) for the Reynolds layer is typical of the warm ionised medium. At the cloud velocity, this ratio is enhanced by a factor of 3-4 compared to emission at rest with respect to the LSR. A moderately deep upper limit at [OIII] (0.12R at 3-sigma) was derived from our data. If the emission arises from dilute photoionisation from hot young stars, the highly enhanced [NII]/H-alpha ratio, the [OIII] non-detection and weak H-alpha emission (0.24-0.30R) suggest that the Smith Cloud is 26+/-4 kpc from the Sun, at a Galactocentric radius of 20+/-4 kpc. This value assumes that the emission arises from an optically thick slab, with a covering fraction of unity as seen by the ionizing photons, whose orientation is either (a) parallel to the Galactic disk, or (b) such as to maximize the received flux from the disk. The estimated mass and size of the cloud are 4x10^6 Msun and 6 kpc. We discuss a possible association with the much larger Sgr dwarf, at a galactocentric radius of 16+/-2 kpc, which lies within 35 degrees (~12 kpc) of the Smith Cloud.Comment: 18 pages, 14 figures, mn.sty. Our first application of a new method for establishing distances to high velocity clouds. This version matches paper to appear in MNRAS, 299, 611-624 (Sept. 11 issue

    Active rotational and translational microrheology beyond the linear spring regime

    Full text link
    Active particle tracking microrheometers have the potential to perform accurate broad-band measurements of viscoelasticity within microscopic systems. Generally, their largest possible precision is limited by Brownian motion and low frequency changes to the system. The signal to noise ratio is usually improved by increasing the size of the driven motion compared to the Brownian as well as averaging over repeated measurements. New theory is presented here which gives the complex shear modulus when the motion of a spherical particle is driven by non-linear forces. In some scenarios error can be further reduced by applying a variable transformation which linearises the equation of motion. This allows normalisation which eliminates low frequency drift in the particle's equilibrium position. Using this method will easily increase the signal strength enough to significantly reduce the measurement time for the same error. Thus the method is more conducive to measuring viscoelasticity in slowly changing microscopic systems, such as a living cell.Comment: 9 pages, 2 figure

    Metastable liquid-liquid coexistence and density anomalies in a core-softened fluid

    Full text link
    Linearly-sloped or `ramp' potentials belong to a class of core-softened models which possess a liquid-liquid critical point (LLCP) in addition to the usual liquid-gas critical point. Furthermore they exhibit thermodynamic anomalies in the density and compressibility, the nature of which may be akin to those occurring in water. Previous simulation studies of ramp potentials have focused on just one functional form, for which the LLCP is thermodynamically stable. In this work we construct a series of ramp potentials, which interpolate between this previously studied form and a ramp-based approximation to the Lennard-Jones (LJ) potential. By means of Monte Carlo simulation, we locate the LLCP, the first order high density liquid (HDL)-low density liquid (LDL) coexistence line, and the line of density maxima for a selection of potentials in the series. We observe that as the LJ limit is approached, the LLCP becomes metastable with respect to freezing into a hexagonal close packed crystalline solid. The qualitative nature of the phase behaviour in this regime shows a remarkable resemblance to that seen in simulation studies of accurate water models. Specifically, the density of the liquid phase exceeds that of the solid; the gradient of the metastable LDL-HDL line is negative in the pressure (p)-temperature (T) plane; while the line of density maxima in the p-T plane has a shape similar to that seen in water and extends well into the {\em stable} liquid region of the phase diagram. As such, our results lend weight to the `second critical point' hypothesis as an explanation for the anomalous behaviour of water.Comment: 7 pages, 8 figure
    corecore